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ABSTRACT
We participated in two tracks: Knowledge Base Acceleration (KBA)
Track and Session Track. In the KBA track, we focused on experi-
menting with different approaches as it is the first time the track is
launched. We experimented with supervised and unsupervised re-
trieval models. Our supervised approach models include language
models and a string-learning system. Our unsupervised approaches
include using: 1)DBpedia labels and 2) Google-Cross-Lingual Dic-
tionary (GCLD). While the approach that uses GCLD targets the
central and relvant bins, all the rest target the central bin. The
GCLD and the string-learning system have outperformed the oth-
ers in their respective targeted bins. The goal of the Session track
submission is to evaluate whether and how a logic framework for
representing user interactions with an IR system can be used for
improving the approximation of the relevant term distribution that
another system that is supposed to have access to the session infor-
mation will then calculate.

the documents in the stream corpora. Three out of the seven runs
used a Hadoop cluster provide by Sara.nl to process the stream cor-
pora. The other 4 runs used a federated access to the same corpora
distributed among 7 workstations. @TODO: Describe the results
when we obtain it.

1. INTRODUCTION
We have participated in two tracks this year: the KBA track and
the session track. The paper is orgaized as follows. We specify
our submission to the session track in Section 2. In Section 3 we
will discuss our approaches, experiments and results with respect
to the KBA track. We conclude the paper with our observations and
findings in section 4.

2. SESSION TRACK
We consider a TREC search session to mainly provide evidence of
a learning process. A task, as specified in the narrative, requires a
user to interact with a search system for learning about the topic
and about the modes of interaction with that particular system that

can lead to task accomplishment.

The goal of this submission is to evaluate whether and how a logic
framework for representing user interactions with an IR system can
be used for improving the approximation of the relevant term dis-
tribution that another system that is supposed to have access to the
session information will then calculate.

We distinguish two separate models. One is a retrieval model that
ranks documents in response to the current query. Another model
takes care of representing the effect of interactions to how the un-
derlying model ought to rank documents. We use query expansion
to connect the output of the interaction model to the input of the
IR model: the interaction model provides therefore a set of expan-
sion terms for the query that the user issued at the last step of the
recorded session.

We use a variation of Probabilistic Dynamic Epistemic Logic (PDEL)
[8] to represent user interactions as sentences interpreted on a Kripke
structure. Within this approach, actions may change the model in
more complex ways than state elimination only, hence the result-
ing probability update generally differs from Bayesian update. The
underlying IR model is a classic language model implemented on
Indri with standard parameters, emphasising the contribution of the
interaction model to the overall performance.

The probabilities at the exit states of the model represent, for each
agent, a subjective probabilistic statement: we hypothesize that a
mixture of these probability metrics outperform current IR mod-
els with relevance feedback. We evaluated this hypothesis on the
session track data.

We briefly introduce the model and some background literature. It
is outside the scope of this document to work out all the technical
details of this approach, which is only presented here as a motiva-
tion for the experiments.

2.1 Retrieval Model
Besides the most basic way to incorporate new evidence into an
existing probabilistic model, that is conditional probability, there
are some alternatives such as using Dempster-Shafer theory [5] or
cross-entropy [4]. A model of a retrieval situation with PDEL con-
tains two separate parts, one epistemic model that accomodates the
deterministic information about the interactions and one pure prob-
abilistic model.

A general case of such a mixed retrieval model is a relevance model



as in [3] with a PDEL model built on top. Next to a frequentist or
bayesian interpretation we introduce then an alternative interpreta-
tion of the relevance model in [3], that is the probability distribution
over a vocabulary conditioned on the observation of a sample from
the relevant population. Both the interpretations that Lavrenko puts
forth in [3] assume a generative process that repeatedly samples
terms from the relevant population. In the logical interpretation we
extend the generative process by specifying that observations are
performed in a certain order, with a well defined structure as deter-
mined by the protocol used to create the dataset.

According to this view, terms from clicked document can be dis-
tinguished from query terms and the end system can explore the
model parameters θ more effectively in an attempt of estimating
the relevant parameter setting θR. We still probabilistically evalu-
ate an uncertainty about relevance, but now we take into account
deterministic information such as the observed interactions.

2.1.1 Adding interactions to a relevance model
Assuming that probabilistic statements about individual cases (for
example the probability of observing a certain term) depend on the
knowledge state of an agent who estimates this probability [2], the
main issue that we address in the experiments is: how can we mod-
ify existing IR models such as in [3] in order to accomodate a for-
malisation of these epistemic states as “observed" (with uncertainty
modeled in PDEL) during a search session? We want to formalise
the intuition that observing a term as a query, in a document from a
result list or in a clicked document should result in different repre-
sentations in the total model.

We make the simplifying assumption that we can keep the represen-
tation of documents and queries, the notion of relevance as well as
the distribution over documents and queries as it is in the standard
account [3]. We only assume that, next to query’s and document’s
transforming functionsD(x) andQ(x) for every x in the full repre-
sentation space S, there is a similar function A(x) that transforms
elements of S into well formed sentences of the PDEL language
LPEL. This transforming function represents another possible re-
duction of the full representation space: next to documents and
queries, a suitable subset of the space S represents actions that a
user might perform during a search session. Since we still want the
transforming functions, Q, D and now the freshly introduced A to
be functionally similar to each other, we get the additional require-
ment that queries and documents must be regular sentences φ of the
PDEL language as well. In this case the probability of observing
an interaction expressed with the formula φ, becomes:

P (φ) =

Z
Θ

nY
a=1

0@X
xia

δ(da, xia)Pia,θ(xia)

1A mY
b=n+1

0@X
xib

Pib,θ(xib)

1A p(θ)dθ

which is the same as [3, eq.3.4], where the argument of the first
product operator are the dimensions of the full representation space
that are retained by A.

Under this assumption a modification of the generative process that
produces an alternative distribution P (·|r) for the relevant popu-
lation, provided that it outputs term probabilities in the usual way,
still admits standard ranking approaches such as PRP or KL diver-
gence based methods.

But, even if we make plausible that only the relevance model needs
to be modified, what additional structures from [8] do we need?
The task here is to do something similar to [3, eq.3.9], where an

initial estimate P (θ) was updated with the observation that r by
means of Bayes’ rule, as

p(θ|r) =
P (r1, r2, . . . , rm|θ)p(θ)
P (r1, r2, . . . , rm)

.

In our case, however, we need a different update strategy that makes
sense of the structured observations. We do not want to simply as-
sume that we sample r = r1, r2, . . . , rm from the relevant popu-
lation. We want also to take into account that r was the product of
a certain user strategy. We also might have some knowledge of the
cognitive process behind this strategy or of the presence of at least
two agents, a human user who has been instructed to search (and
that we know the rules in terms of a narrative or an experimental
protocol) and a retrieval system which can be similar to the sys-
tem that we use for our experiments. This rich structure of session
records is not accounted for in a classic retrieval model.

We expect that the potential performance enhancement upon ex-
ploiting this structured information about a search process pays
back for the added complexity that we must introduce in the rel-
evance model. The major source of this additional complexity will
appear to be the dependence between probability distributions and
epistemic states: whereas, see for example [3, eq.5.5], in the stan-
dard generative model we need only one distribution over each rep-
resentation, queries or documents, when we include actions, dis-
tributions will prolify, since we will generate one distribution for
each agent in each possible epistemic state. This complexity, how-
ever, only reflects the complexity of the structure that comes with
our observation. Standard relevance models are a distribution over
the vocabulary, conditioned on the observation of a string: it is not
surprising that if we want to introduce a probabilistic update upon
observation of what we assume is a much more complicated pro-
cess, the complexity of the formalism will inevitably increase.

At a minimum we need a probabilistic epistemic language LPEL
to express sentences about what agents believe, as on that depends
their probability assignments. We also need a semantic to interpret
these sentences and an update frame that, once combined with the
prior model, outputs a new epistemic model with posterior proba-
bilities. Hopefully the posterior distribution p(θ|φ) so obtained is
a better estimation of the unknown parameter θR than that from [3,
eq.3.9].

In text retrieval, the set of primitive proposition that agents are sup-
posed to reason about are of the type ‘the relative frequency of
term a in the relevant population is f(a)’. We assume that there is
a search process that, after a certain number of steps which depend
on a user’s skills, will generate the relevant population SR; an op-
timally skilled user is someone who successfully pursues this path.
In this case we do not need to represent sessions’ interactions be-
cause the final query will generate the best possible ranking. How-
ever, while we do not have these idealised optimal users, the search
skills of our users still improve during a search session.

We are interested in the probabilities that users assign at different
stages of this learning process: this is the relevance feedback that
our users indirectly provide to the system. We want also to provide
a uniform account of actions as if they were documents and queries.
In more formal terms, we are interested in the probability of the
denotation of a formula in the language LPEL that represents the
result of the observed learning process. These are probabilities over
the full event space E , that is a σ-algebra over the full representation



space S: E ⊆ ℘(S)

We propose an epistemic alternative to the pure probabilistic update
[3, eq.3.9] by first giving an epistemic interpretation of eq. 3.9, next
to its frequentist and bayesian versions. Eq. 3.9 defines an update
function P (·|r) for an agent who observes the statement that r,
which is a true statement so that P (r|r) = 1. We can represent a
prior epistemic status as a network of states that are singled out by
the truth values of different propositions at those states: accessibil-
ity relations connect states into an oriented graph representing what
an agent believes to be true. In a typical IR application, for exam-
ple, we might think of states as labeled by different configurations
of a distribution parameter θ; whereas in standard epistemic logic
there is a focus on factual knowledge, the world that is actually the
case, in IR the focus will be on relevance.

Applying eq. 3.9 according to this interpretation amounts then to
define a distribution µ over the set S of all possible epistemic states,
such that a sum of µ over all states s ∈ S is defined to be 1, and a
discrete update function that maps a distribution before the obser-
vation that r to a distribution after that observation, as:

µ′(s) =

(
µ(s) ·

“
1 + P (¬r)

P (r)

”
, if s � r

0, if s 2 r

where P (r) =
P
{s∈S|s|=r} µ(s) is the confidence in the observa-

tion that r. The update from eq. 3.9 amounts then to eliminating
all the epistemic states where the observed r does not hold and re-
normalising the distribution over the remaining states in the same
proportions as before the observation.

This very same feature of updating with conditional probabilities
was already questioned in other logical approaches to IR such as
Logical Imaging [1] and its quantum IR version [9]. In the imaging
approach renormalisation after an update was performed by con-
sidering that the probability mass taken away from ¬r states should
be assigned only to states similar to the removed states, under some
suitable similarity measure.

The alternative update based on PDEL considers the uncertainty in
the learning process or observation probabilities [8] so that we can-
not say that r is definitely a token of relevance. In our approach we
also agree that renormalisation should not be uniform as in stan-
dard update, and in our contribution we aim at deriving from user
models and observed interactions a set of occurrence probabilites
for events, and use them to perform the update more effectively.

2.2 TREC evaluation
The retrieval model introduced in the previous section extends con-
ditional probability with an account of how a user’s interactions
with a system changes the probability model. Information about
interactions, in our case the session information, which belongs to
each of the 4 TREC tasks, determine the space upon which the final
system computes a standard conditional probability.

At the first step, before any interaction, the PDEL model contains
only an initial distribution on the parameter space. This model ac-
counts for the prior probability, one of the three kind of probabili-
ties that we want to model.

To a second type of probability belong the occurrence probabilities
for events. While in a real life situations [6] this probability reflects
our knowledge of how information needs arise, in the TREC setting

this probabilities model our knowledge of the experimental setting,
that is represented in the procedure used to create the dataset. The
main component of this experimental protocol is a narrative, a set of
sentences designed to guide the user in finding relevant documents
for the topic.

Occurrence probabilities for events are taken into account by means
of a set Φ of preconditions and a function PRE that assigns to each
element of Φ a probability distribution over the set of events E . The
PRE function determines the states of the updated model, allowing
only states where a positive probability is assigned to the event at
a state of the prior model. For example an updated model S′ will
contain a state (s′, e) iff there is a state s = 〈θm〉 labeled with a
certain parameter θm in the prior model S and there is an event e ∈
E such that PRE(s, e) > 0. In the TREC application we consider
only cooperative users: we only allow query events that are relevant
to the global narrative, given the knowledge represented at each
state.

For each distribution θs at state s we consider the difference un-
der Kolmogorov-Smirnov test between θs and all the distributions
θ′, . . . , θm obtained by considering each sentence of the narrative
to be a sample from the relevant population. The cardinality of
the event set is equal to the cardinality of the set of narrative sen-
tences. We then compare the effect of updating each distribution
pair with the observed query: we define relevance as the property
of reducing the gap between each distribution pair compared with
a uninformative sentence represented by a sample from the back-
ground distribution. Therefore the PRE function will be positive if
the difference exceeds a treshold that depends on the background
probability.

We can interpret the preconditions in terms of the relevance model
in [3, eq. 3.8] if we consider that each state is a point of the in-
tegration range Θ. The integral can be splitted in subintervals and
multiplied by a constant before normalisation: some intervals of
possible parameters can be eliminated if the constant is zero.

A third component of the updated model is the set of uncertainty
relations between events, which models the observation probabil-
ities. At the first step, before any query refinement, we take our
best guess for these probabilities to be the effect, again compared
to that of a sample of the background probabilities, of updating a
pair of narrative distributions with the observed query. Notice that
the model does not depend on a choice of the similarity test: we can
use any estimation of the similarity between the ranked lists that an
IR system would produce by exchanging the two probability distri-
butions. The rationale is that if a system cannot produce different
ranked lists when different prior models are updated with the a rel-
evant sample, either the query is not discriminative enough or the
collection does not contain enough information to effectively han-
dle the query: in both cases this is a metric for the uncertainty about
which distribution is the most appropriate to generate the relevant
population.

The normalised product of these three probabilities yields the prior
probabilities of the relevant model at the following step, that is
the probabilistic uncertainties between the new states, now labeled
with the content of the previous state (a distribution parameter) and
the action taken (a query interpreted in one of the possible senses
according to the narrative).

2.2.1 RL1 task: prior distribution
The prior model has n states, each labeled with one distribution pa-
rameter and probability Ptsyst,s = 1

n
. That is, from the test system



perspective, each parameter is a priori an equally probable gener-
ator for the relevant population. We estimate the distributions at
each state using the narrative: we use each sentence as a query and
we retrieve kp documents. We tested this approach on 2011 data
and we found out that retrieving more than 25 documents ensures
that the estimated distributions are not too similar to each other.
Each retrieved list determines a distribution over the entire session
vocabulary, that is over all the terms that have nonzero probability
at least in one state distribution. In order to avoid zero probabilities
in a state distribution, we mix the estimated distribution with the
background distribution under a mixing parameter λ = 0.3. We
take the top ep most frequent terms at each state as expansion for
the current query at RL1. In TREC 2012 we limited the size of the
distribution to kp = 3 and of the query expansions to ep = 5. A
weighting schema assigns to the current query a weight equal to
the cardinality of the state set, while state weights are inverserly
proportional to their normalised distance under K-S measure to the
background distribution.

2.2.2 RL2-4 tasks: update with events
For the remaining tasks we can use the general form of the update
rule in PDEL [8], that is:

P ′a((s, e), (s′, e′)) =
Pa(s)(s′) · PRE(s′, e′) · Pa(e)(e′)P

s′′∈S,e′′∈E Pa(s)(s′′) · PRE(s′′, e′′) · Pa(e)(e′′)
.

consisting of a re-normalised product of all the probabilities for
events.

The queries q define in RL2 the event set E . Each component of
the event set defines a possible sense of the query. We hypothe-
sise that each query sense can be mapped to a distribution asso-
ciated with the relevance model after having observed the query,
restricted to the original prior. As before the preconditions are the
distances of each updated distribution to the distributions at the pre-
vious step. To estimate the observation probabilities, we first calcu-
late the marginal distance of a state distribution to each other state
distribution. This is a measure of the probability of confusing a
query sense with another. We derive a total observation probability
by summing onto the marginals.

In the RL3 task we consider the effect that the output of the retrieval
system has on a user’s epistemic state. We assume that browsing a
ranked list amounts to creating an additional state that extends the
original prior. Interactions can therefore, not only reweight some
state, but also add new ones to the model. We recalculate the entire
query update upon a new model, where the distributions, including
those of the prior, now range onto a possibly larger session vocab-
ulary.

In the RL4 task, clicks induce an update similar to queries. We use
the top ec most frequent terms from the snippets of the clicked doc-
uments to update the entire model as if they were query terms. This
is a coarse approximation of using the term distributions from the
whole clicked document, but given the limited session vocabulary,
we expect that effect on the final rank will be negligible. We also
limit the snippet size to ec = 5.

2.3 Results and discussion
The left side of the table here below shows the nDCG at k of our
proposed model. To the right side we report the median among the
TREC participants.

Clearly this is only a preliminary assessment of our results based

Task CWI submission median TREC
RL1 (prior) 0.2422 0.1746
RL2 (query upd.) 0.2529 0.1901
RL3 (RL upd.) 0.2313 0.2160
RL4 (click upd.) 0.2319 0.2261

Table 1: nDCG at k of the CWI submission and median of TREC
2012 over all sessions

Figure 1: Initial approach

exclusively on the evaluation script output provided by the organ-
isers.

These results only allows to evaluate our choice of the prior and
its associated weighting scheme for RL1. Our system has been
explicilty designed to capture a user’s learning process, that is how,
starting from a possibly uninformative prior, the probability mass
can be redistributed to states associated with the relevant topics.
Aspects of the topic that a user learned to be less relevant should be
discounted. Under the assumption of a moderately effective user,
who learns as a session goes on, high probable states in the model
should correspond to the relevant distribution of the current query.

We interpret the high score on all tasks, combined with a negli-
gible difference between tasks, to the nature of the topics. They
require just few interactions to be resolved and test users show a
good understanding of what kind of documents might possibly be
used to accomplish these tasks. The query update rule improves
on the prior, indicating that queries are the most effective mode of
interaction, hence a great deal of the uncertainty is in how to issue
the correct query terms in this particular system.

3. KNOWLEDGE BASE ACCELERATION
3.1 Intial ideas on approaches and architec-

ture
It was stated that 4% of the Wikipedia citations did not mention
the Wikipedia entities they are cited by. We thought there could be
more documents in the stream that do not mention the Wikipedia
entities by name and yet are relevant. Capturing relevant docu-
ments that do not mention entities by name was our first interest.
At this moment, we wanted to capture two things:

• Stream documents that do not mention Wikipedia entities by
name and yet are relevant(central), and

• The evolution of an entity as documents that are relevant(central)
are found

To accomodate these two interests, we thought of an approach as in
Figure 3.1.



The model could be anything. We thought of a machine-learned
model, string similarity, string-matching, or any other. The output
was taken as input because we thought the evolution of an entity has
changed the entity and so the new representation should be used in
the query. The big questions here were

• How to represent the WP entities and the stream-documents

• What to add to the representation of the Wikipedia entities
when a relevant stream document is found

• What models, approaches to use

3.1.1 Release of sample annotation and some statis-
tics

garbage neutral relevant central total
mention 7991 3862 13971 7806 33630
not mentions 15367 163 61 0 15591

Table 2: statistics from few weeks annotation

Statistics from the few weeks annotation changed the way we see
the task. Out of all non-mentioning documents, only 0.4% are
relevant, 0% are central. So we did not see, from a performance
perspective, a point in concentrating our efforts on detecting non-
mentioning-yet-relevant stream documents. Instead, we decided to
focus only on mentioning and relevant or/and central. The impli-
cation of this is that the two big questions we raised above are no
longer important. The reason why the first question is not impor-
tant is evident. The second question is also the same because for a
document to be relevant or central, it will almost always mention
the entity, thus no need to update representation.

3.1.2 A new challenge and a new approach
Out of all mentioning documents, 23.8% are garbage, 35.3% are
garbage or neutral. Now, the challenge is not how to filter non-
mentioning-yet relevant, but how to exclude mentioning-yet-non-
relevant i.e. garbage and neutral. Another challenge is that the enti-
ties are ambiguous in the sense that two entities can have the same
or nearly the same name, and thus the same representation. This
observation informed our next choices of approaches. We thought
of approaches that can, at least, solve one of the two problems. Our
supervised approaches attempt to solve both problems while our
unsupervised ones mainly attempt to solve the ambiguity problem.
When we were pondering about solutions to this, we came across
a resource called Google-Cross-Lingual dictionary (GCLD). We
thought that using the GCLD captures the second problem since
it has probabilities for the strings and concepts. We also thought
that, in combination with other disambiguation methods, the GCLD
could be used to distinguish garbage and neutral from relevant and
central.

Therefore the approach now is exactly like Figure 3.1, but without
the output going as input. This means to first represent the queries
(the Wikipedia entities) in some way and to query the stream. After
finding a match of the strings for an entity in the stream, we use the
probabilities to give a confidence score. All our approaches revolve
around the choices of entity representation, the scoring function to
measure confidence and scaling functions.

3.2 Representation
Representing the Wikipedia entities (the queries) and the stream
documents in some way is mandatory. At first, we thought we can
represent the streams in terms of n-gram tokens thereby reducing
the size of the corpus, but then that would confine us to only some

approaches that can consume the tokens. So we left stream doc-
uments representation to simple representation during processing.
However, we needed to represent the Wikipedia entities in some
way. All our approaches used a different entity representation and
that is the main component. The components of any of our ap-
proaches are entity representation, string matching, scoring and, to
some extent, scaling functions.

3.3 Development Environment
We used JAVA and python as main programming languages. We
used Hadoop architecture provided by SARA (the Natherlands SARA
Computing and Networking Services) and Java to process the data
in a map reduce architecture. Python was used to process the same
data in a federated fashion: six computers each with a 8-core pro-
cessors and GNU tool called GNU Parallel to parallalize the pro-
cess. The Java Hadoop architecture was much faster than the fed-
erated architecture.

3.4 Supervised Approaches
We describe now the two supervised approaches used in this chal-
lenge. The first approach, Prefix-Suffix Learning, focuses on preci-
sion, penalizing the recall. The second, Language Model, focuses
on balancing the precision and recall.

3.4.1 Prefix-Suffix Learning Approach
In this approach, for each entity e, we learned a set of strings Se
of the form uv and vw that occur in the documents annotated as
central (denoted as ∆+) and does not occur in document annotated
as relevant, neutral or garbage (denoted as ∆−); where v ∈ Ve, u
is prefix of v of size K and w is a suffix of v of size K. We vary
K in the interval [1, ..,K], then we learned at most 2K different
strings per unique v ∈ Ve.

Example: Consider the entity Nassim Taleb, its set VNassimTaleb =
{Nassim Nicholas Taleb, Nassim Taleb} and the news document
below:

"Among the people we reached out to while reporting this week’s
cover story on Rich Marin was Nassim Taleb. Not only is he a
well-known talking head (and presumably accessible), but he also
got his start at Bankers Trust, just like Mr. Marin. "

For K = 4, the set SNassimTaleb = { Nassim Taleb, s Nassim
Taleb, as Nassim Taleb, was Nassim Taleb, Nassim Taleb., Nassim
Taleb. , Nassim Taleb. N, Nassim Taleb. No}

Then, for each entity e, an arbitrary document D is annotated as
central if any string in Se occur in D.

The algorithm to learn the string Se is described in the Alg.1. In
the run that we submitted, we used K = 10.

3.4.2 Language Model Approach
This approach focuses on balancing precision and recall. To do so,
we build a statistic language model for each entity e ∈ E using the
training documents annotated as central. Then we score the docu-
ments based on the perplexity measure between the entity language
model and the document text. We normalize the values between
[0,1000]. This measure may produce some documents with low
score; however, we consider all those documents with score > 0 as
central. Below we detail this approach.

DEFINITION 1 (ENTITY LANGUAGE MODEL). Given an en-
tity e and a corpora ∆+ of documents annotated as central, we



Algorithm 1 LearningPrefixSuffixStrings(E, ∆+,∆−, K).
S ← ∅
for all e ∈ E do

Se ← ∅
Ve ← QueryDBPediaLabels(e)
for all v ∈ Ve do

for all d ∈ ∆+ do
if d.contains(v) then

Se ← Se ∪ prefix(v, d, K)
Se ← Se ∪ suffix(v, d, K)

end if
end for
for all d ∈ ∆− do

if d.contains(v) then
Ne ← Ne ∪ prefix(v, d, K)
Ne ← Ne ∪ suffix(v, d, K)

end if
end for

end for
S ← S ∪ (Se −Ne)

end for
return S

build a statistical language model, trigram model, LMe for e overS
d∈∆+

e
d, where ∆+

e = {d|∀d ∈ ∆+ ∧ v ∈ Ve ∧ d = uvw}

In other words, for each entity e we build a trigram language model
LMe over an aggregate document containing all document anno-
tated as central for the entity e.

We particularly used the Kyoto Language Modeling Toolkit (Kylm)1

to build this language model. The only parameter set in this api was
smoothuni. Alg.3 describe the process of creating the language
model.

Algorithm 2 LanguageModelTraining(E, ∆+).
LM ← ∅
for all e ∈ E do

Ve ← QueryDBPediaLabels(e)
for all v ∈ Ve do

for all d ∈ ∆+ do
if d.contains(v) then

∆+
e ← ∆+

e ∪ d
end if

end for
end for
LMe ← NGramModel(∆+

e , 3) #Trigram
LM ← LM ∪ LMe

end for
return LM

In order to annotated the test corpora as central, we compute the
perplexity between a new document and each specific language
model.

The perplexity is based on entropy, where the entropy gives a mea-
sure of how likely the ngram model is to have generated the test
data. Entropy is defined (for a sliding-window type ngram) as:

H = − 1

Q

QX
i=1

logP (wi|wi−1, wi−2, ...wi−N+1)

where Q is the number of words of test data and N is the order of
the ngram model. Perplexity is a more intuitive measure, defined
as:

perplexity = 2H

9 1http://www.phontron.com/kylm/

The perplexity of an ngram model with vocabulary size W will
be between 1 and W. Low perplexity indicates a more predictable
language. All documents with perplexity < 100 were consider as
central.

Alg.4 describes this process.

Algorithm 3 LanguageModelCentralAnnotator(E, D, LM ).
CENTRAL← newMatrix(D, E)
for all e ∈ E do

Ve ← QueryDBPediaLabels(e)
for all v ∈ Ve do

for all d ∈ D do
if d.contains(v) then

p← perplexity(LMe, d)
if p < 100 then

CENTRAL[d][e]← p
end if

end if
end for

end for
end for
return CENTRAL

3.5 Unsupervised Approaches
We have experimented with two main unsupervised approaches:
one so-called disambiguator and another so-called Google-Cross-
Lingual Dictionary (GCLD). In both of them, The Wikipedia Wikipedia
entities are represented by strings and those strings are used to
query the stream. If a matching string is found, then the document
is relevant and/or central to a degree provided by a scoring function.
The disambiguator targets the central bins while the GCLD targets
the relevant and central bins. Under the GCLD based approach,
we have experimented with many variations of scoring functions,
thresholds and scaling functions.

3.5.1 Disambiguator
Entity Representation

Given an entity e among the 29 given Wikipedia entities, we repre-
sent e as a set of strings Ve, defined as:

DEFINITION 2 (ENTITY REPRESENTATION). An entity rep-
resentation Ve of an entity e is the result of the SPARQL2 query
over DBPedia3 representation of an entity e - a RDF version of
Wikipedia:

SELECT d i s t i n c t ? o WHERE
{ e < h t t p : / / www. w3 . org / 2 0 0 0 / 0 1 / r d f−schema # l a b e l > ? o . }

UNION

SELECT d i s t i n c t ? o WHERE {
e < h t t p : / / xmlns . com / f o a f / 0 . 1 / name> ? o . }

In other words, the set Ve is the set of labels and name of the
entity e in DBPedia. For example, the set V for the entity Nas-
sim Taleb 4, is: VNassimTaleb = {Nassim Nicholas Taleb, Nassim
Taleb}

Disambiguator Approach

This approach aims at producing high recall and improve the pre-
cision over the baseline by solving only the cases where the source
entities are ambiguous.

9 2http://en.wikipedia.org/wiki/SPARQL
9 3http://dbpedia.org
9 4In DBPedia: http://dbpedia.org/page/Nassim_Nicholas_Taleb



DEFINITION 3 (AMBIGUOUS ENTITIES). Given two distinct
entities e and f , they are ambiguous if their entity representations
Ve ∩ Vf 6= ∅.

Basically, to produce high recall, we select the documents using the
string in the entity representation Ve, and then to improve precision
over this initial selection, we filter the documents using an extended
entity representation Te that we describe next.

When two or more entities are ambiguous, it is impossible to decide
what exactly entity a string mentioned in a document refers to. For
example, among the 29 entities provided in TREC-KBA 2012, four
entities were ambiguous:

B o r i s _ B e r e z o v s k y _ ( bus ine s sman ) ;
B o r i s _ B e r e z o v s k y _ ( p i a n i s t ) ;
Bas i c_E lemen t_ ( company ) ;
Bas i c_E lemen t_ ( mus ic_group ) .

For example, the string Boris Berezovsky may refer to a pianist
or a businessman. Without context information, we cannot decide
which one it refers to.

In order to decide which one of the ambiguous entity an document
mention, we contextualize an entity representation using type in-
formation extracted from DBPedia representation of this entity. An
typified entity representation is defined such as:

DEFINITION 4 (TYPIFIED ENTITY REPRESENTATION). A typ-
ified entity representation Te of an entity e is the results of the
SPARQL query below:

SELECT d i s t i n c t ? c WHERE {
e < h t t p : / / www. w3 . org /1999/02/22− r d f−syn t ax−ns # type > ? o .
? o < h t t p : / / www. w3 . org / 2 0 0 0 / 0 1 / r d f−schema # l a b e l > ? c . }

UNION

SELECT d i s t i n c t ? c WHERE {
e < h t t p : / / p u r l . o rg / dc / t e r m s / s u b j e c t > ? o .
? o < h t t p : / / www. w3 . org / 2 0 0 0 / 0 1 / r d f−schema # l a b e l > ? c . }

UNION

SELECT d i s t i n c t ? c WHERE {
e < h t t p : / / p u r l . o rg / dc / t e r m s / s u b j e c t > ? z .
? z < h t t p : / / www. w3 . org / 2 0 0 4 / 0 2 / skos / c o r e # b r o a d e r > ? o .
? o < h t t p : / / www. w3 . org / 2 0 0 0 / 0 1 / r d f−schema # l a b e l > ? c . }

In other words, this query retrieves a set of string representing the
type of an entity e in its DBPedia representation. The property
type and subject above define the type of a specific DBPedia
representation. For example, considering the entity Boris_Berezovsky_
(businessman), the instantiation of the query above would be:

SELECT d i s t i n c t ? c WHERE {
< h t t p : / / d b p e d i a . o rg / page / B o r i s _ B e r e z o v s k y _ ( p i a n i s t ) >
< h t t p : / / www. w3 . org /1999/02/22− r d f−syn t ax−ns # type > ? o .
? o < h t t p : / / www. w3 . org / 2 0 0 0 / 0 1 / r d f−schema # l a b e l > ? c . }

UNION

SELECT d i s t i n c t ? c WHERE {
< h t t p : / / d b p e d i a . o rg / page / B o r i s _ B e r e z o v s k y _ ( p i a n i s t ) >
< h t t p : / / p u r l . o rg / dc / t e r m s / s u b j e c t > ? o .
? o < h t t p : / / www. w3 . org / 2 0 0 0 / 0 1 / r d f−schema # l a b e l > ? c . }

UNION

SELECT d i s t i n c t ? c WHERE {
< h t t p : / / d b p e d i a . o rg / page / B o r i s _ B e r e z o v s k y _ ( p i a n i s t ) >

< h t t p : / / p u r l . o rg / dc / t e r m s / s u b j e c t > ? z .
? z < h t t p : / / www. w3 . org / 2 0 0 4 / 0 2 / skos / c o r e # b r o a d e r > ? o .
? o < h t t p : / / www. w3 . org / 2 0 0 0 / 0 1 / r d f−schema # l a b e l > ? c . }

Then TBoris_Berezovsky_(pianist) = {pianist,musician, russian}.

Given an entity e, the algorithm process the news stream sequen-
tially and for all document D that contains a string v ∈ Ve, we
produce a Jaccard score between Te and de, where de and Jaccard
is defined such as:

DEFINITION 5 (ENTITY CONTEXT). A entity context de of an
entity e is a set of tokens of a string uvw in D, where u ∈ Ve, and
u and w have at most a length L. In the run that we submitted, we
set L = 400.

DEFINITION 6 (JACCARD SCORE). Given two sets A and B,
the Jaccard score of these sets are:

Jaccard =
(A ∩B)

(A ∪B)

A document D is considered central for an entity e if:

Jaccard(Te, de) > 0 ∧ ∀x ∈ E : x 6= e, Jaccard(Te, de) >
Jaccard(Tx, dx)

Alg. 2 describes the process of annotating central documents using
this method.

Algorithm 4 DisambiguatorCentralAnnotator(E, D, L).
CENTRAL← ∅
MATRIX ← newMatrix(D, E)
for all e ∈ E do

Ve ← QueryDBPediaLabels(e)
Te ← QueryDBPediaTypes(e)
for all v ∈ Ve do

for all d ∈ D do
if d.contains(v) then

de ← context(d, e, L)
MATRIX[d][e]←MATRIX[d][e] + Jaccard(Te, de)

end if
end for

end for
end for
for all d ∈ D do

if MATRIX[d].max > 0 then
CENTRAL← CENTRAL ∪ [d, MATRIX[d].maxEntity]

end if
end for
return CENTRAL

3.5.2 Google Cross Lingual Dictionary (GCLD) Ap-
proach

In our main unsupervised approach, we use a resource called Google-
Cross-Lingual dictionary (GCLD) that maps language independent
strings of words and Wikipedia articles (also called concepts or
URLs). The resource assigns empirical probability distributions
to strings given a URL and to URLs given a string [7]. Our ap-
proach here is to represent the queries (the Wikipedia entities) by
the strings in the dictionary and to use the new representation as a
query to filter documents that are central or/and relevant from the
stream. The probabilities are used to give a confidence score for the
relevance of a document for a Wikipedia entity. The dictionary has
many different statistical information that can be used in different
ways to improve performance and we have tried to experiment with



some and examined their effects. Below we will detail the dictio-
nary, the approach we used, the experiments we did and discuss the
results and draw conclusions.

The dictionary

The dictionary is bi-directional in the sense it provides a mapping
from free-form-natural language strings to concepts and vice versa.
The strings are gathered from anchor texts to all Wikipedia pages
and the English Wikipedia titles. This means the strings include
anchor texts from inter-wikipedia linking, and anchor texts to non-
English Wikipedia articles. The strength of association between
strings and concepts is quantified by conditional probabilities.

Let s ∈ S be a string and let e ∈ E be a Wikipedia entity. l(s, e)
is a link between s and e where s is used as an anchor in a link to a
Wikipedia entity e. #l(s, e) is the total number of hyperlinks into
a Wikipedia article e using anchor text s.

P
e∈E l(s, e) is the total

number of links into Wikipedia pages that use s as an anchor andP
s∈S l(s, e) is the total number of links to a Wikipedia article e.

Based on this, the dictionary defines two probabilities : P (URL|s)
for strings to concepts and P (s|URL) for concepts to strings as
follows.

P (URL|s) =
#l(s, e)P
e∈E l(s, e)

(1)

P (s|URL) =
#l(s, e)P
s∈S l(s, e)

(2)

Formula one tells whether a string is ever used as an anchor text to
a certain Wikipedia entity and if it does it gives the probability. By
this, it disambiguates the string by distributing the probability mass
over the different Wikipedia entities according to how often it is
used as an anchor to each of them. The second formula quantifies
how important as an anchor a certain string is in comparison to
other strings that also point to the same entity e. All strings that can
be used as anchors to a certain Wikipedia article are co-referents,
and the second formula measures the relative strength with which
a co-referent refers to a Wikipedia article.

An alternative way to look at the two formulas is to interpret them
analogous to the tf-IDF concept ( see table 3 ). Analogous to the
tf-IDF concept, a document is the number of links pointing to a WP
article.

One can think that the first formula is like the term frequency nor-
malized by the number of terms and the second formula is a modi-
fied idf, i.e. it uses the number of links into a document instead of
the number of the collection and normalizes it by the number of all
links having anchor s.

Experiments, Results and discussions

We conducted many experiments by varying dictionary strings for
representation, probabilities for scoring, and thresholds for select-
ing strings. The algorithm is string matching, i.e. once the Wikipedia
entities are represented with our choice of set of strings, we query
each document of the stream if it has a match for the elements of
our set. If there is a match, we give the document-entity pair a
confidence score computed based on the probabilities. When more
than one element of the set of strings for an entity are matched,

tf-IDF ditionary
t =term l(s,e) - an instance of a link between

anchor s and WP e
tf = term-frequency #l(s,e) - the total number of hyperlinks

to a Wikipedia article having s as
anchor

d
P
s∈S l(s, e)-all links to a WP article

dft The total number of links that contain
s, #
P
s∈S l(s, e) that contain particular

l(s,e), lfl(s,e)
N #

P
s∈S l(s, e) - the collection, the

number of WP entities in this case
idft = log N

dft
idfl(s,e) = #l(s,e)P

s∈S l(s,e)

Table 3: Analogy to tf-IDF table

we take either the average or the maximum of the probabilities of
the matched strings. Our measures were recall, precision, and F-
measure against relevance cut-off. But to distinguish between two
approaches, we mainly looked at F-measure.

Our first experiment was with probabilities given by P (URL|s) .
We lowercased all the string representations of the Wikipedia en-
tities and the stream documents. When two strings are lowercased
to the same form, we assign the form we keep the higher proba-
bility. We also stripped punctuation and white spaces. We did ex-
periments with strings that come only from non-Wikipedia pages,
and all strings to English or corresponding non-English Wikipedia
pages. We compared the results on F-measure and the later repre-
sentation performed better. The reason for increment in F-measure
was because of an increase in recall. And the increase in recall
is due to the additional strings. Using average of the probabili-
ties of the matching strings performed worse than the maximum.
Next, we experimented by setting different thresholds on probabil-
ities in order to select strings that have higher probabilities. We
tried thresholds 0.01, 0.001, 0.0001. However, the performance did
not improve significantly. In fact, in the case of threshold 0.01,
performance dropped significantly.

Our second experiment was in lowercasing and stripping punctua-
tions. The dictionary strings that we used are not lowercased, i.e.
“Nasim” and “NASIM” are considered different strings. The dic-
tionary strings also contain punctuations and white spaces. We de-
cided to experiment without lowercasing the entity representations
and the stream documents. The performance was a big improve-
ment over the lowercased and punctuation-stripped approach. It is
not surprising that it is so since it better captures the capitalizations
which are a feature of proper nouns.

However, we were not happy with results since the performance
scores were still poor. Moreover, thus the confidence scores were
very small and were very susceptible to scaling functions. P (URL|s)
is like a tf , it never tells us how discriminative a string is to a
certain Wikipedia entity with respect to other Wikipedia entities.
P (s|URL) is the right probability to use for this purpose. P (s|URL)
exposes the ambiguity in a string by distributing the probability
mass over the entities it can be used as anchor in a link. There are
many strings whose P (s|URL) probabilities were 1, which shows
that the document containing the string is highly probably relevant
to the WP entity the string represents. And, indeed, experiments
using these probabilities for scoring showed better performance.
The use of P (s|URL) disambiguates ambiguous entities naturally.
Varying thresholds for string selection and using averaging instead
of maximum did not improve results significantly.



Our third experiment was combining the two probabilities for scor-
ing. When more than one string is matched, we multiply both prob-
abilities first, and keep the maximum as a score. Our best scores
on the relevant and central bins was obtained by this approach. Our
main run submissions were from this approach. We also submitted
runs using the same approach but with lowecased and punctuation-
stripped. For both cases, we used two different simple per-entity
scaling functions. First, we selected the maximum score per entity
and use that to scale the results as:

sscaled(doc− entity) =
s(doc− entity)

smax(entity)
∗ 100%. (3)

Our second scaling function was using a threshold on maximum
score per entity to discourage entities whose maximum score is less
than 10. we used a threshold of 10 for smax(entity such that those
entities whose highest score is less than 10 will be divided by 10.

Using the combined scoring with and without lowercasing and strip-
ping and the two scaling functions, we submitted 4 runs. The non-
stripping results were good. In total, we submitted 7 runs (1 prefix-
suffix, 1 language model, 1 disambiguator, 4 GCLDbased). The
GCLD submissions are google_dic_1(no lowercasing and no strip-
ping off, normalizing by the highest score except those whose score
is less than 10), google_dic_3(lowercasing and stripping off nor-
malized by the highest score) , google_strip_1 (lowercasing strip-
ping off, normalize by highest score except those whose score is
less than 10) and google_strip_2(lowercasing and stripping off, nor-
malizing by highest score).

GCLD challenges

The GCLD is a mapping between strings and Wikipedia concepts
or vice versa. While the probabilities show how likely a string can
be used as an anchor in a link to a Wikipedia page, it never shows
how important the anchor text is for a document. The only re-
lationship between the strings in the dictionary and the strings in
the document is through string matching. This means a word may
have a high probability of being used in a link to a Wikipedia page,
but if the word is not important for the document, say Obama in a
restaurant’s name, the match becomes useless. We believe incorpo-
rating some third function that measures the importance of a term
for a document can improve the performance. This is something
we want to try next. Another challenge is the presence of noise in
the GCLD. Strings such as “here” are present in many of the entity
representations.

3.5.3 Run Graphs and comparisons
Figures 2 and 3 show the performance on the test set of disam-
biguator and prefix-suffix learning respectively. Similarly, Tables 4
and 5 show the two best performing variations of GCLD. 6 shows
the highest score for each entity and the run that generated it.

4. CONCLUSIONS
In the session track, we experimented with our system that is ex-
plicitly designed to capture a user’s learning process. It achieves
high scores on all tasks with a negligible difference between tasks.
In KBA track, we have experimented with supervised and unsu-
pervised approaches. Under the supervised approach, we have ex-
perimented with prefix-suffix learning and language models. On
the training set, both learning approaches have comparable perfor-
mance. Under the unsupervised approach, we have experimented
with DBpedia labels and GCLD. Under GCLD, we have tried dif-
ferent entity representations, different scoring functions, and dif-
ferent scaling functions. The two supervised approaches and the

Figure 2: DbPedia.

Figure 3: Prefix-sufix learning.

DBpedia labels approach target the central bin. In the GCLD, we
have targeted the central+relevant bins because the nature of the
strings is not in a position to differentiate between central and rel-
evant. On the test set, the DbPedia labels approach showed a bet-
ter performance. On the central+relevant bins, the GCLD with no
stripping and full per-entity normalization performed better than
other variations.

Our experiments and approaches show that there are three factors
that affect commulative citation recommendation: entity reperesen-
tation, local context, and scoring. The GCLD and DbPedia repre-
sentations and their better performance over other machine learning
approaches testify that a good entity representation is important for
CCR. A very important point about entity representation learned
from the GCLD is that the entity representation should be used as
they are i.e. without lowercasing and stripping off punctuations.
The GCLD is noisy, but it also includes many of the DbPedia labels.
Trec 2012 participant University of Delaware group has obtained a
good result using entity name and related entity name.It is interest-
ing to explore which entity representation is best and why for the
future. The string learning performed well at detecting documents
relevant to some ambigious entities such as the Basicelements
suggesting that local context can help improve results. The impor-
tance of a scoring function is shown by the different scoring func-
tions that we used in GCLD. For the future, studying the interaction
between entity representation, local context and scoring functions
may give a better insight into what constitues a better CCR system.

5. REFERENCES



Entities Central Relevant+central
maxF approach maxF approach

Mario_Garnero 0.952 google_dic_1, google_dic_3 0.952 google_dic_3, google_dic_1
Basic_Element_(company) 0.870 prefix_suffix 0.594 google_dic_3, google_dic_1
Basic_Element_(music_group) 0.731 prefix_suffix 0.038 google_dic_3, google_dic_1
Satoshi_Ishii 0.642 disambiguation 0.604 google_dic_3, google_dic_1
Jim_Steyer 0.634 disambiguation 0.0 all
Ikuhisa_Minowa 0.612 google_dic_1, google_dic_3 0.612 google_dic_3 , google_dic_1
William_D._Cohan 0.611 disambiguation 0.395 google_dic_3, google_dic_1
Vladimir_Potanin 0.565 language_model 0.336 google_dic_3, google_dic_1
Boris_Berezovsky_(businessman) 0.544 google_dic_1, google_dic_3 0.544 google_dic_3, google_dic_1
Roustam_Tariko 0.471 disambiguation 0.466 google_dic_3, google_dic_1
Nassim_Nicholas_Taleb 0.466 disambiguation 0.463 google_dic_3, google_dic_1
Lisa_Bloom 0.451 prefix_suffix 0.153 google_dic_3, google_dic_1
Charlie_Savage 0.4 language_model 0.158 google_dic_3, google_dic_1
Annie_Laurie_Gaylor 0.396 disambiguation 0.392 google_dic_3, google_dic_1
Ruth_Rendell 0.392 disambiguation 0.386 google_dic_3, google_dic_1
Frederick_M._Lawrence 0.333 google_dic_3, disambiguation 0.333 google_dic_3, google_dic_1
James_McCartney 0.310 disambiguation 0.281 google_dic_3, google_dic_1
Alex_Kapranos 0.301 disambiguation 0.298 google_dic_3, google_dic_1
Darren_Rowse 0.290 disambiguation 0.270 google_dic_3, google_dic_1
Douglas_Carswell 0.235 prefix_suffix 0.162 google_dic_3, google_dic_1
Bill_Coen 0.235 disambiguation 0.231 google_dic_3, google_dic_1
Alexander_McCall_Smith 0.228 prefix_suffix 0.221 google_dic_3, google_dic_1
Aharon_Barak 0.184 disambiguation 0.183 google_dic_3, google_dic_1
Lovebug_Starski 0.167 language_model 0.125 google_dic_3, google_dic_1
William_H._Gates_sr 0.163 google_dic_1,google_dic_3 0.163 google_dic_3, google_dic_1
William_Cohen 0.147 google_strip_2, google_strip_2 0.147 google_strip_2, google_strip_1
Boris_Berezovsky_(pianist) 0.143 google_dic_1, google_dic_3 0.143 google_dic_3, google_dic_1
Rodrigo_Pimentel 0.114 disambiguation 0.047 google_dic_3, google_dic_1
Masaru_Emoto 0.104 google_strip_2,google_strip_2 0.104 google_strip_2, google_strip_1

Table 6: The highest maxF scores for each entity and the run that
produced it ( Results sorted by the maxF of the central column)
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Table 4: Results of GCLD no stripping normalized by highest score. Training results in the left column and testing results in the right column.



cross_ligual_no_stripping_normalized_by_highest_score_per_entity_except_those_less_then_10
Trainig Test

c

c+r
Table 5: Results of GCLD no stripping normalized by highest score except those less than 10. Training results in the left column and testing
results in the right column.


